Evaluate LLMs - ML Flow Evals, Auto Eval
Using LiteLLM with ML Flow​
MLflow provides an API mlflow.evaluate()
to help evaluate your LLMs https://mlflow.org/docs/latest/llms/llm-evaluate/index.html
Pre Requisites​
pip install litellm
pip install mlflow
Step 1: Start LiteLLM Proxy on the CLI​
LiteLLM allows you to create an OpenAI compatible server for all supported LLMs. More information on litellm proxy here
$ litellm --model huggingface/bigcode/starcoder
#INFO: Proxy running on http://0.0.0.0:8000
Here's how you can create the proxy for other supported llms
- Bedrock
- Huggingface (TGI)
- Anthropic
- VLLM
- OpenAI Compatible Server
- TogetherAI
- Replicate
- Petals
- Palm
- Azure OpenAI
- AI21
- Cohere
$ export AWS_ACCESS_KEY_ID=""
$ export AWS_REGION_NAME="" # e.g. us-west-2
$ export AWS_SECRET_ACCESS_KEY=""
$ litellm --model bedrock/anthropic.claude-v2
$ export HUGGINGFACE_API_KEY=my-api-key #[OPTIONAL]
$ litellm --model huggingface/<your model name> --api_base https://k58ory32yinf1ly0.us-east-1.aws.endpoints.huggingface.cloud
$ export ANTHROPIC_API_KEY=my-api-key
$ litellm --model claude-instant-1
$ litellm --model vllm/facebook/opt-125m
$ litellm --model openai/<model_name> --api_base <your-api-base>
$ export TOGETHERAI_API_KEY=my-api-key
$ litellm --model together_ai/lmsys/vicuna-13b-v1.5-16k
$ export REPLICATE_API_KEY=my-api-key
$ litellm \
--model replicate/meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3
$ litellm --model petals/meta-llama/Llama-2-70b-chat-hf
$ export PALM_API_KEY=my-palm-key
$ litellm --model palm/chat-bison
$ export AZURE_API_KEY=my-api-key
$ export AZURE_API_BASE=my-api-base
$ litellm --model azure/my-deployment-name
$ export AI21_API_KEY=my-api-key
$ litellm --model j2-light
$ export COHERE_API_KEY=my-api-key
$ litellm --model command-nightly
Step 2: Run ML Flow​
Before running the eval we will set openai.api_base
to the litellm proxy from Step 1
openai.api_base = "http://0.0.0.0:8000"
import openai
import pandas as pd
openai.api_key = "anything" # this can be anything, we set the key on the proxy
openai.api_base = "http://0.0.0.0:8000" # set api base to the proxy from step 1
import mlflow
eval_data = pd.DataFrame(
{
"inputs": [
"What is the largest country",
"What is the weather in sf?",
],
"ground_truth": [
"India is a large country",
"It's cold in SF today"
],
}
)
with mlflow.start_run() as run:
system_prompt = "Answer the following question in two sentences"
logged_model_info = mlflow.openai.log_model(
model="gpt-3.5",
task=openai.ChatCompletion,
artifact_path="model",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": "{question}"},
],
)
# Use predefined question-answering metrics to evaluate our model.
results = mlflow.evaluate(
logged_model_info.model_uri,
eval_data,
targets="ground_truth",
model_type="question-answering",
)
print(f"See aggregated evaluation results below: \n{results.metrics}")
# Evaluation result for each data record is available in `results.tables`.
eval_table = results.tables["eval_results_table"]
print(f"See evaluation table below: \n{eval_table}")
ML Flow Output​
{'toxicity/v1/mean': 0.00014476531214313582, 'toxicity/v1/variance': 2.5759661361262862e-12, 'toxicity/v1/p90': 0.00014604929747292773, 'toxicity/v1/ratio': 0.0, 'exact_match/v1': 0.0}
Downloading artifacts: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 1890.18it/s]
See evaluation table below:
inputs ground_truth outputs token_count toxicity/v1/score
0 What is the largest country India is a large country Russia is the largest country in the world in... 14 0.000146
1 What is the weather in sf? It's cold in SF today I'm sorry, I cannot provide the current weath... 36 0.000143
Using LiteLLM with AutoEval​
AutoEvals is a tool for quickly and easily evaluating AI model outputs using best practices. https://github.com/braintrustdata/autoevals
Pre Requisites​
pip install litellm
pip install autoevals
Quick Start​
In this code sample we use the Factuality()
evaluator from autoevals.llm
to test whether an output is factual, compared to an original (expected) value.
See autoevals docs on the supported evaluators - Translation, Summary, Security Evaluators etc
# auto evals imports
from autoevals.llm import *
###################
import litellm
# litellm completion call
question = "which country has the highest population"
response = litellm.completion(
model = "gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": question
}
],
)
print(response)
# use the auto eval Factuality() evaluator
evaluator = Factuality()
result = evaluator(
output=response.choices[0]["message"]["content"], # response from litellm.completion()
expected="India", # expected output
input=question # question passed to litellm.completion
)
print(result)
Output of Evaluation - from AutoEvals​
Score(
name='Factuality',
score=0,
metadata=
{'rationale': "The expert answer is 'India'.\nThe submitted answer is 'As of 2021, China has the highest population in the world with an estimated 1.4 billion people.'\nThe submitted answer mentions China as the country with the highest population, while the expert answer mentions India.\nThere is a disagreement between the submitted answer and the expert answer.",
'choice': 'D'
},
error=None
)