Embedding Models
Quick Start​
from litellm import embedding
import os
os.environ['OPENAI_API_KEY'] = ""
response = embedding('text-embedding-ada-002', input=["good morning from litellm"])
Expected Output from litellm.embedding()​
{
"object": "list",
"data": [
{
"object": "embedding",
"index": 0,
"embedding": [
-0.0022326677571982145,
0.010749882087111473,
...
...
...
]
}
],
"model": "text-embedding-ada-002-v2",
"usage": {
"prompt_tokens": 10,
"total_tokens": 10
}
}
OpenAI Embedding Models​
Usage​
from litellm import embedding
import os
os.environ['OPENAI_API_KEY'] = ""
response = embedding('text-embedding-ada-002', input=["good morning from litellm"])
Model Name | Function Call | Required OS Variables |
---|---|---|
text-embedding-ada-002 | embedding('text-embedding-ada-002', input) | os.environ['OPENAI_API_KEY'] |
Azure OpenAI Embedding Models​
API keys​
This can be set as env variables or passed as params to litellm.embedding()
import os
os.environ['AZURE_API_KEY'] =
os.environ['AZURE_API_BASE'] =
os.environ['AZURE_API_VERSION'] =
Usage​
from litellm import embedding
response = embedding(
model="azure/<your deployment name>",
input=["good morning from litellm"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
)
print(response)
Model Name | Function Call |
---|---|
text-embedding-ada-002 | embedding(model="azure/<your deployment name>", input=input) |
h/t to Mikko for this integration
Bedrock Embedding​
API keys​
This can be set as env variables or passed as params to litellm.embedding()
import os
os.environ["AWS_ACCESS_KEY_ID"] = "" # Access key
os.environ["AWS_SECRET_ACCESS_KEY"] = "" # Secret access key
os.environ["AWS_REGION_NAME"] = "" # us-east-1, us-east-2, us-west-1, us-west-2
Usage​
from litellm import embedding
response = embedding(
model="amazon.titan-embed-text-v1",
input=["good morning from litellm"],
)
print(response)
Model Name | Function Call |
---|---|
Titan Embeddings - G1 | embedding(model="amazon.titan-embed-text-v1", input=input) |
Cohere Embedding Models​
https://docs.cohere.com/reference/embed
Usage​
from litellm import embedding
os.environ["COHERE_API_KEY"] = "cohere key"
# cohere call
response = embedding(
model="embed-english-v3.0",
input=["good morning from litellm", "this is another item"],
input_type="search_document" # optional param for v3 llms
)
Model Name | Function Call |
---|---|
embed-english-v3.0 | embedding(model="embed-english-v3.0", input=["good morning from litellm", "this is another item"]) |
embed-english-light-v3.0 | embedding(model="embed-english-light-v3.0", input=["good morning from litellm", "this is another item"]) |
embed-multilingual-v3.0 | embedding(model="embed-multilingual-v3.0", input=["good morning from litellm", "this is another item"]) |
embed-multilingual-light-v3.0 | embedding(model="embed-multilingual-light-v3.0", input=["good morning from litellm", "this is another item"]) |
embed-english-v2.0 | embedding(model="embed-english-v2.0", input=["good morning from litellm", "this is another item"]) |
embed-english-light-v2.0 | embedding(model="embed-english-light-v2.0", input=["good morning from litellm", "this is another item"]) |
embed-multilingual-v2.0 | embedding(model="embed-multilingual-v2.0", input=["good morning from litellm", "this is another item"]) |
HuggingFace Embedding Models​
LiteLLM supports all Feature-Extraction Embedding models: https://huggingface.co/models?pipeline_tag=feature-extraction
Usage​
from litellm import embedding
import os
os.environ['HUGGINGFACE_API_KEY'] = ""
response = embedding(
model='huggingface/microsoft/codebert-base',
input=["good morning from litellm"]
)
Model Name | Function Call | Required OS Variables |
---|---|---|
microsoft/codebert-base | embedding('huggingface/microsoft/codebert-base', input=input) | os.environ['HUGGINGFACE_API_KEY'] |
BAAI/bge-large-zh | embedding('huggingface/BAAI/bge-large-zh', input=input) | os.environ['HUGGINGFACE_API_KEY'] |
any-hf-embedding-model | embedding('huggingface/hf-embedding-model', input=input) | os.environ['HUGGINGFACE_API_KEY'] |